Abstract

Spatial distribution of ground motion data of recent earthquakes unveiled some features of peak ground acceleration (PGA) attenuation with respect to closest distance to the fault ( R) that current predictive models may not effectively capture. As such, PGA: (1) remains constant in the near-fault area, (2) may show an increase in amplitudes at a certain distance of about 3–10 km from the fault rupture, (3) attenuates with slope ofR−1and faster at farther distances, and (4) intensifies at certain distances due to basin effect (if basin is present). A new ground motion attenuation model is developed using a comprehensive set of ground motion data compiled from shallow crustal earthquakes. A novel feature of the predictive model is its new functional form structured on the transfer function of a single-degree-of-freedom oscillator whereby frequency square term is replaced with closest distance to the fault. We are proposing to fit ground motion amplitudes to a shape of a response function of a series (cascade) of filters, stacked separately one after another, instead of fitting an attenuation curve to a prescribed empirical expression. In this mathematical model each filter represents a separate physical effect.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.