Abstract
Simulation-based design tools have been used since the late 1980s for designing vertical borehole ground heat exchangers (GHE) used with ground source heat pump (GSHP) systems. The ground heat exchanger simulations used in these tools rely on thermal response functions known as g-functions. Because of the significant computational burden in computing g-functions for even a single configuration, the design tools have relied on libraries of pre-computed g-functions. These g-functions were available for standard configuration shapes, such as lines, rectangles, open rectangles, L-shapes, and U-shapes. Standard shapes are often sub-optimal. For any building on a site, the available land may preclude use of a standard shape. For large GSHP systems with significantly imbalanced annual heat rejection and extraction loads, large rectangular fields may experience significant heat build-up (or heat draw-down) in the interior of the field. This paper describes a new ground heat exchanger design tool capable of automatically selecting and sizing both standard and irregular configurations. The focus of this paper is a method for creating, selecting, and sizing irregular configurations where the available land area and “no-go” zones are described as irregular polygons.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.