Abstract

Emission of sulfide and methane from sewerage system has been a major concern for a long time. Sewers are now facing emerging challenges, such as receiving food waste (FW) to relieve the burdens on solid waste treatment. However, the knowledge of the direct impact of FW addition on sulfide and methane production in and emission from sewers is still lacking. In this study, two lab-scale sewer reactors, one without and one with FW addition, were continuously operated to investigate the production of sulfide and methane and microbial communities arising from FW discharge to freshwater sewerage system. The 190-day long-term monitoring and the batch tests on days 69 and 124 suggest that the FW addition has little impact on sulfide production possibly due to the limited sulfate concentration (40 mg S/L) but enhanced methane production by up to 60%. Moreover, cryosection-fluorescence in situ hybridization (FISH) revealed that the FW addition significantly stimulated the accumulation of methanogenic archaea (MA) in sewer biofilms and altered the spatial distributions of sulfate-reducing bacteria (SRB) and MA. Moreover, the relative abundance of MA in biofilms with FW addition was higher than that without FW addition, whereas the relative abundance of SRB was similar. Metabolic pathway analysis for sulfidogenesis and methanogenesis indicates that sufficient substrates derived from the FW addition were biodegraded during fermentation to produce acetate and hydrogen, and consequently facilitate methanogenesis. These findings shed light on the impacts of changes in wastewater compositions (e.g., FW addition) on sulfide and methane production in the freshwater sewerage system for improved policy-making on sewer management.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call