Abstract
With the rapid development of DC power supply technology, the operation, maintenance, and fault detection of DC power supply equipment and devices on the user side have become important tasks in power load management. DC/DC converters, as core components of photovoltaic and energy storage DC systems, have issues with detecting ground faults on the positive and negative input/output buses, leading to difficulties in troubleshooting device malfunctions and potentially endangering user safety. To address these issues, a method for detecting ground faults on the positive and negative buses of a synchronous buck photovoltaic and energy storage DC/DC converter is proposed, which involves the comprehensive measurement of multi-point common-mode voltages. This method collects the input positive bus voltage, output positive bus voltage, switch voltage, and the common-mode voltage at the midpoint of the bridge arm, then sums these after removing the switching harmonics. By analyzing the characteristic differences of the summed voltage under the ground fault modes of the positive and negative input/output buses, characteristic parameters are extracted to establish a ground fault identification method, thereby achieving effective detection of ground faults in the photovoltaic and energy storage DC/DC converter. Finally, the effectiveness of the method proposed in this paper was validated through simulations and experiments.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.