Abstract
Pressurized water pipelines buried in an urban environment are prone to bursting failures, threatening public safety and traffic convenience. The limited studies in literature just focused on soil fluidization while few studies considered ground failure, shear strain, soil erosion and the influence of leakage locations during pipe bursts. In this study, extensive experimental tests along with a finite difference method – discrete element method (FDM-DEM) solid–fluid coupling analysis were conducted to investigate these issues. It was disclosed that the failure development during pipe bursts can be divided into three stages, i.e., seepage diffusion, erosion cavity expansion, and soil fluidization. By digital image correlation (DIC) analysis of the experimental results, a wedge-shaped displacement zone in ground was identified, with peak shear strain near its boundaries. Moreover, it was revealed that leakage locations affected the expansion origin of erosion cavity; as the burial depths increased, the ground heave range increased linearly; the maximum water outflow distance was closely related to the internal pressures of buried pipeline, which could be modeled by a square root formula based on turbulent jet theory. Mesoscopic analyses revealed that finer particles were more susceptible to erosion during pipe bursts because of the low possibility of forming strong connections with surrounding particles. The findings yielded from this study can enhance the understanding of pipe bursts and help professionals mitigate potential damage.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.