Abstract

In order to cooperate with the Chinese TG-2 space experiment project, this paper studies the flow structure and critical conditions at the onset of transition and nonlinear regimes of bouyant-thermocapillary convection in large-scale liquid bridge with large Prandtl number under normal gravity. The surface temperature distribution is obtained by means of thermal infrared camera, to study the temperature oscillation, temporal-spatial analysis and modal structures of the temperature field. In addition, the fluid velocity field is measured by Particle Image Velocimetry, to study the internal flow field structure and flow characteristics in the transition process of the liquid bridge. It is found that the critical value of the buoyant-thermocapillary convection in the half-zone liquid bridge can be affected by geometric parameters. Under large Prandtl number conditions, the critical temperature difference will change nonlinearly with the volume ratio, and the convection will transit from steady flow to a sequence of instabilities. In addition, various wave patterns will appear with increasing Marangoni number, and with further increased temperature difference a chaos state will emerge.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.