Abstract

We study ring current dynamics on a day of exceptionally low solar wind density (of ∼0.1 cm−3). Inner magnetospheric measurements of geomagnetic activity show geomagnetic quiet par excellence. On May 11, 1999, the values were |Dst| < 10 nT and Kp = 0+. The field at geostationary orbit was very close to dipolar. We simulate the global evolution of the ring current ion population during this period and compare the effect of the magnetopause, ring, magnetotail, and field‐aligned currents on the Dst index. Measured H+, He+, and O+ energy and pitch angle distributions by the Magnetospheric Ion Composition Spectrometer (MICS) and HYDRA instruments on Polar on May 9 are used as initial conditions for our kinetic model. Comparing model results with Polar data on May 11, we find remarkable agreement, proving the applicability of our model for these magnetospheric conditions. We compare modeled H+ and He+ ion distributions with quiet time ring current distributions inferred from statistical studies, and we find that as a general trend, the simulation results have lower values than the statistical patterns. The ground magnetic field disturbances due to the ring and the magnetopause currents decrease quasi‐monotonically on May 11, reaching limiting magnitudes of ∼5 and ∼3 nT, respectively. These values are substantially smaller than the ∼20 nT quiet time values obtained from statistical studies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.