Abstract

We report on the development effort of a nanosecond-pulsed optical parametric amplifier (OPA) for remote trace gas measurements for Mars and Earth. The OPA output has ∼500 MHz linewidth and is widely tunable at both near-infrared and mid-infrared wavelengths, with an optical-optical conversion efficiency of up to ∼39% . Using this laser source, we demonstrated open-path measurements of CH 4 (3291 and 1652 nm), CO 2 (1573 nm), H 2 O (1652 nm), and CO (4764 nm) on the ground. The simplicity, tunability, and power scalability of the OPA make it a strong candidate for general planetary lidar instruments, which will offer important information on the origins of the planet's geology, atmosphere, and potential for biology.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call