Abstract

The advent of quantum cascade lasers has provided matured continuously tunable solid state laser sources emitting from mid-infrared to terahertz wavelengths. Such sources, used as local oscillators, offer the practical prospect of aircraft, high altitude platform, and satellite deployment of compact and shot noise limited heterodyne radiometers for Earth observation and astronomy. A ground-based prototype of a quantum cascade laser heterodyne radiometer operating in the mid-infrared has been developed and is presented. The instrument design and concepts are described, together with evaluation of the instrument in the laboratory and during field measurements of atmospheric ozone. In this study the best performance achieved by the prototype quantum cascade laser heterodyne radiometer was a signal-to-noise ratio of three times the theoretical shot-noise limit. The prototype has allowed the main sources of excess noise to be identified as residual optical feedback in the local oscillator optical path and a lack of mechanical and thermal stability in the local oscillator collimation system. Instrument improvements are currently being implemented and enhanced performance is expected in the near future.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.