Abstract
Atmospheric ammonia (NH3) plays an important role in the formation of fine particulate matter, leading to severe environmental degradation and human health issues. In this work, ground-based Fourier transform infrared spectrometry (FTIR) observations are used to obtain the total columns of atmospheric NH3 at Hefei, China, from December 2016 to December 2020. After the presentation of the retrieval algorithm and uncertainty budget, we perform a spatio-temporal analysis of the dataset. Over the four years, NH3 columns have been increasing by 15.82% (2017–2018), 3.83% (2018–2019) and 3.68% (2019–2020). A clear seasonal cycle is observed, with the largest surface concentrations (12.93 ± 6.40 ppb) observed in June to August, and the lowest (4.08± 2.66 ppb) in November to January. The diurnal cycles of NH3 exhibit increased morning and afternoon concentrations. Interpretation of the diurnal cycles is difficult, however, the absence of a peak during rush hours, and the absence of correlation with CO and NO2 suggest that agriculture and not traffic is the main source of NH3 at Hefei. The polar plots of NH3 columns with wind and back trajectories of air masses calculated by the HYSPLIT model confirmed that agriculture was the dominant source of ammonia in four seasons, while urban anthropogenic emissions contributed to the high level of NH3 in summer over the Hefei site. We end this paper with a short validation exercise of NH3 columns retrieved from measurements of the IASI satellite data with the FTIR measurements over Hefei. Correlation coefficients (R) between the two datasets are 0.79 and 0.75 for IASI-A and IASI-B, with the slope of 0.96 and 1.10, respectively. The mean difference is −3.44 × 1015 and −3.96 × 1015 molec cm−2, with standard deviation of 7.16 × 1015 and 8.10 × 1015 molec cm−2, respectively. These results demonstrate the IASI and FTIR data, over Hefei, are in broad agreement.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.