Abstract

Multi-axial differential optical absorption spectroscopy (MAX-DOAS) measurements were conducted in Xishuangbanna, Yunnan, China, between November 1, 2021 and June 30, 2022 to obtain vertical distributions of formaldehyde (HCHO) and glyoxal (CHOCHO). The observations show an increase in vertical column densities (VCDs) and volume mixing ratios (VMRs) for both HCHO and CHOCHO concentrations during periods of biomass combustion. The VCDs of HCHO and CHOCHO from TROPOMI are in good agreement with the MAX-DOAS observations. (R2HCHO = 0.71; R2CHOCHO = 0.70). Regarding seasonal variations, HCHO predominantly occupies the upper layer (400-800 m) during the biomass burning, possibly attributed to the formation of secondary HCHO as the plume ascends during combustion. CHOCHO is primarily found in the lower layer (0-200 m), suggesting a longer lifespan for HCHO compared to CHOCHO, preventing the latter from diffusing to higher altitudes. Concerning the daily variation patterns, both HCHO and CHOCHO VMRs exhibited peaks at 9:00 and 13:00, which were attributed to the nighttime accumulation and midday oxidation. Furthermore, we also investigated the sources of volatile organic compounds (VOCs) using the CHOCHO to HCHO ratio (RGF). During the period of biomass burning, there are minimal differences in the daily RGF across layers, indicating that biomass burning is the predominant source. During the non-biomass burning period, the daily RGF shows significant differences among layers, indicating that emissions from biological and anthropogenic sources primarily contribute during the period.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.