Abstract

In this paper we discuss the design concepts and preliminary results relating to the European Space Agency's ground-based campaign TropiScat, whose main goal is to evaluate temporal coherence at P-band in a tropical forest in quad-polarization, considering temporal lags ranging from hours to months and at different heights within the vegetation layer. The experiment has been successfully set up and operated since October 2011 at the Paracou field station, French Guiana, where the equipment was installed on top of the 55-m high Guyaflux Tower to illuminate the forest below. The system consists of a vector network analyzer connected to 20 antennas through a switchbox, which allows the use of any of them either as a transmitter or as a receiver. Vertical imaging and fully polarimetric capabilities are achieved by operating the 20 antennas in a multistatic fashion, resulting in an equivalent monostatic array consisting of 15 phase centers displaced along the vertical direction in each polarization. Such a design allows unambiguous imaging of the vegetation while yielding a minimum distance between nearby antennas on the order of 0.8 m, so as to minimize coupling effects. The equipment allows the gathering of signals with the tomographic array within a few minutes, resulting in the possibility to produce a tomographic image of the forest with a temporal sampling of 15 min. System calibration and validation was performed by employing a 2-m trihedral reflector and a rotating dihedral reflector. This allowed the evaluation of the system pulse response in all polarizations and also assessment of the extent of tower motions. As a result, tomographic images have been generated from 500 (P-band) to 900 MHz in all polarizations. Results from real data acquired in Fall 2011 confirm the feasibility of carrying out reliable coherence measurements for the whole duration of the campaign.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.