Abstract

In this paper, we introduce the notion of Grothendieck enriched categories for categories enriched over a sufficiently nice Grothendieck monoidal category \(\mathcal {V}\), generalizing the classical notion of Grothendieck categories. Then we establish the Gabriel-Popescu type theorem for Grothendieck enriched categories. We also prove that the property of being Grothendieck enriched categories is preserved under the change of the base monoidal categories by a monoidal right adjoint functor. In particular, if we take as \(\mathcal {V}\) the monoidal category of complexes of abelian groups, we obtain the notion of Grothendieck dg categories. As an application of the main results, we see that the dg category of complexes of quasi-coherent sheaves on a quasi-compact and quasi-separated scheme is an example of Grothendieck dg categories.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.