Abstract

Conditions are given under which the solution map I of a stochastic differential equation on a Riemannian manifolds M intertwines the differentiation operator d on the path space of M and that of the canonical Wiener space, d Ω I ∗= I ∗ d C x 0 M . A uniqueness property of d on the path space follows. Results are also given for higher derivatives and covariant derivatives. To cite this article: K.D. Elworthy, X.-M. Li, C. R. Acad. Sci. Paris, Ser. I 337 (2003).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.