Abstract

Abstract Daily averaged TOGA COARE data are analyzed to investigate the convective amplification/decay mechanisms. The gross moist stability (GMS), which represents moist static energy (MSE) export efficiency by large-scale circulations associated with the convection, is studied together with two quantities, called the critical GMS (a ratio of diabatic forcing to the convective intensity) and the drying efficiency [a version of the effective GMS (GMS minus critical GMS)]. The analyses reveal that convection intensifies (decays) via negative (positive) drying efficiency. The authors illustrate that variability of the drying efficiency during the convective amplifying phase is predominantly explained by the vertical MSE advection (or vertical GMS), which imports MSE via bottom-heavy vertical velocity profiles (associated with negative vertical GMS) and eventually starts exporting MSE via top-heavy profiles (associated with positive vertical GMS). The variability of the drying efficiency during the decaying phase is, in contrast, explained by the horizontal MSE advection. The critical GMS, which is moistening efficiency due to the diabatic forcing, is broadly constant throughout the convective life cycle, indicating that the diabatic forcing always tends to destabilize the convective system in a constant manner. The authors propose various ways of computing quasi-time-independent “characteristic GMS” and demonstrate that all of them are equivalent and can be interpreted as (i) the critical GMS, (ii) the GMS at the maximum precipitation, and (iii) a combination of feedback constants between the radiation, evaporation, and convection. Those interpretations indicate that each convective life cycle is a fluctuation of rapidly changing GMS around slowly changing characteristic GMS.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call