Abstract
In this article we study the hyperbolicity in the Gromov sense of metric spaces. We deduce the hyperbolicity of a space from the hyperbolicity of its “building block components,” which can be joined following an arbitrary scheme. These results are especially valuable since they simplify notably the topology and allow to obtain global results from local information. Some interesting theorems about the role of punctures and funnels on the hyperbolicity of Riemann surfaces can be deduced from the conclusions of this article.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.