Abstract
In this paper, we study the vertex cut-trees of Galton–Watson trees conditioned to have $n$ leaves. This notion is a slight variation of Dieuleveut’s vertex cut-tree of Galton–Watson trees conditioned to have $n$ vertices. Our main result is a joint Gromov–Hausdorff–Prokhorov convergence in the finite variance case of the Galton–Watson tree and its vertex cut-tree to Bertoin and Miermont’s joint distribution of the Brownian CRT and its cut-tree. The methods also apply to the infinite variance case, but the problem to strengthen Dieuleveut’s and Bertoin and Miermont’s Gromov–Prokhorov convergence to Gromov–Hausdorff–Prokhorov remains open for their models conditioned to have $n$ vertices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.