Abstract
Recently, the old notion of causal boundary for a spacetime V has been redefined in a consistent way. The computation of this boundary $\partial V$ for a standard conformally stationary spacetime V = R x M, suggests a natural compactification $M_B$ associated to any Riemannian metric on M or, more generally, to any Finslerian one. The corresponding boundary $\partial_B M$ is constructed in terms of Busemann-type functions. Roughly, $\partial_B M$ represents the set of all the directions in M including both, asymptotic and "finite" (or "incomplete") directions. This Busemann boundary $\partial_B M$ is related to two classical boundaries: the Cauchy boundary and the Gromov boundary. Our aims are: (1) to study the subtleties of both, the Cauchy boundary for any generalized (possibly non-symmetric) distance and the Gromov compactification for any (possibly incomplete) Finsler manifold, (2) to introduce the new Busemann compactification $M_B$, relating it with the previous two completions, and (3) to give a full description of the causal boundary $\partial V$ of any standard conformally stationary spacetime.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.