Abstract

We introduce an approach exploiting the power of polynomial ring algebra to perform SystemVerilog assertion verification over digital circuit systems. This method is based on Groebner bases theory and sequential properties checking. We define a constrained subset of SVAs so that an efficient polynomial modeling mechanism for both circuit descriptions and assertions can be applied. We present an algorithm framework based on the algebraic representations using Groebner bases for concurrent SVAs checking. Case studies show that computer algebra can provide canonical symbolic representations for both assertions and circuit designs and can act as a novel solver engine from the viewpoint of symbolic computation.

Highlights

  • SystemVerilog [1, 2] is the most important unified Hardware Description and Verification Language (HDVL) and provides a major set of extensions from the Verilog language with the added benefit of supporting object orientated constructs and assertions feature

  • We presented a new method for SystemVerilog Assertions (SVAs) properties checking by using Groebner bases based symbolic algebraic approaches

  • We first introduce a notion of symbolic constant without any sequential information for handling local variables in SVAs inspired from STE

Read more

Summary

Introduction

SystemVerilog [1, 2] is the most important unified Hardware Description and Verification Language (HDVL) and provides a major set of extensions from the Verilog language with the added benefit of supporting object orientated constructs and assertions feature. SystemVerilog provides special language constructs and assertions, to specify and verify design behavior. An assertion is a statement that a specific condition, or sequence of conditions, in a design is true. In the industry of integrated circuits design, Assertionsbased verification (ABV) using SystemVerilog Assertions (SVAs) is changing the traditional design process. With the help of SVAs, it is easy to formally characterize the design requirements at various levels of abstraction, guide the verification task, and simplify the design of the testbench. Assertions essentially become active design comments, and one important methodology treats them exactly like active design comments

Objectives
Methods
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.