Abstract
We present results from two long-duration GRMHD simulations of advection-dominated accretion around a non-spinning black hole. The first simulation was designed to avoid significant accumulation of magnetic flux around the black hole. This simulation was run for a time of 200,000GM/c^3 and achieved inflow equilibrium out to a radius \sim90GM/c^2. Even at this relatively large radius, the mass outflow rate \dot{M}_{out} is found to be only 60% of the net mass inflow rate \dot{M}_{BH} into the black hole. The second simulation was designed to achieve substantial magnetic flux accumulation around the black hole in a magnetically arrested disc. This simulation was run for a shorter time of 100,000GM/c^3. Nevertheless, because the mean radial velocity was several times larger than in the first simulation, it reached inflow equilibrium out to a radius \sim170GM/c^2. Here, \dot{M}_{out} becomes equal to \dot{M}_{BH} at r\sim 160GM/c^2. Since the mass outflow rates in the two simulations do not show robust convergence with time, it is likely that the true outflow rates are lower than our estimates. The effect of black hole spin on mass outflow remains to be explored. Neither simulation shows strong evidence for convection, though a complete analysis including the effect of magnetic fields is left for the future.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.