Abstract

A novel grinding wheel wear monitoring system based on discrete wavelet decomposition and support vector machine is proposed. The grinding signals are collected by an acoustic emission (AE) sensor. A preprocessing method is presented to identify the grinding period signals from raw AE signals. Root mean square and variance of each decomposition level are designated as the feature vector using discrete wavelet decomposition. Various grinding experiments were performed on a surface grinder to validate the proposed classification system. The results indicate that the proposed monitoring system could achieve a classification accuracy of 99.39% with a cut depth of 10 μm, and 100% with a cut depth of 20 μm. Finally, several factors that may affect the classification results were discussed as well.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.