Abstract

To minimize friction at the grinding wheel–workpiece interface, a nanosized lubricant complex of β-cyclodextrin (β-CD) and dialkyl pentasulfide (RC2540) was proposed as filler to phenolic resin-bonded grinding wheels. Complex-filled grinding wheels with different filling content (5, 10, 15, and 20 wt%) were prepared by the cold compression method and the tribological properties of the wheel specimens were investigated under different speed and load conditions. The grinding performance of the complex-filled grinding wheels was compared with that of an ordinary grinding wheel under different liquid coolant conditions (water and emulsified liquid). The experimental results suggest that the complex-filled grinding wheel considerably improves the tribological and grinding performance compared with those of the ordinary grinding wheel. A complex-filled wheel with 10 wt% complex is recommended because it provides not only higher grinding ratio and lower grinding force but also better surface finish. In addition, XPS analysis was used to investigate the workpiece surface. RC2540 is found to be released as the complex decomposes. The enhanced tribological and grinding performances of the wheel are attributed to the formation of an anti-friction and anti-wear self-lubricating layer comprising sulfide and carbon-deposited films, which improve the surface quality.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call