Abstract

In this investigation, ceramics such as zirconia and silicon carbide were ground by lap grinding using the ELID (electrolytic in-process dressing) method and using various-sized metal bonded wheels (mesh sizes of #1200-#8000). Differences in the ground finish, according to the wheel grain size, and surface roughness were investigated through the use of a Scanning Electron Microscope (SEM). It was found that the ground surface roughness improved proportionally to the grain size. The SEM observations also showed that the ground surfaces using wheels over #4000 were very smooth with several minute ground grooves crossing each other without brittle fracture. Brittle-ductile transition was studied using these wheels and the removal mechanisms of silicon and tungsten carbides were also investigated. It was found that for silicon, brittle-ductile transition was obtained using wheels over #8000 and for tungsten carbides, transition was achieved using wheels over #4000. Therefore, the work materials affect the changes in the removal mechanism.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.