Abstract
In order to explore the grinding characteristics of cBN-WC-10Co composites, the grinding experiment with a resin bond diamond grinding wheel was carried out. The grinding forces, surface roughness, surface morphology and residual stress were investigated. It was found that the material removal mechanism of cBN-WC-10Co was the combination of the brittle fracture of cBN particles, ductile removal of Co phase, plastic deformation, grain dislodgement and grain crush of WC grains. The brittle removal model resulted in a lower specific grinding energy. The main contributor to the surface roughness was cBN particles. Some cBN particles over the surface of cBN-WC-10Co composites were fractured or pulled out and then formed cavities with different depths, this led to a rougher surface. The surface roughness was increased but the specific grinding energy decreased with an increase of the maximum undeformed chip thickness. A high-level residual compressive stress was induced at WC phase and it was increased with an increase of the depth of cut. The depth of cut has more significant influence on the grinding forces than the table speed or the wheel speed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.