Abstract

AbstractThe Griffiths group Grr(X) of a smooth projective variety X over an algebraically closed field is defined to be the group of homologically trivial algebraic cycles of codimension r on X modulo the subgroup of algebraically trivial algebraic cycles. The main result of this paper is that the Griffiths group Gr2() of a supersingular abelian variety over the algebraic closure of a finite field of characteristic p is at most a p-primary torsion group. As a corollary the same conclusion holds for supersingular Fermat threefolds. In contrast, using methods of C. Schoen it is also shown that if the Tate conjecture is valid for all smooth projective surfaces and all finite extensions of the finite ground field k of characteristic p > 2, then the Griffiths group of any ordinary abelian threefold over the algebraic closure of k is non-trivial; in fact, for all but a finite number of primes l ≈ p it is the case that Gr2() ⊗ ℤl ≈ 0.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.