Abstract

People turn to social media to express their emotions surrounding major life events. Death of a loved one is one scenario in which people share their feelings in the semi-public space of social networking sites. In this paper, we present the results of a two-part investigation of grief and distress in the context of messages posted to the profiles of deceased MySpace users. We present coding system for identifying emotion distressed content, followed by a detailed analysis of language use that lays a foundation for natural language processing (NLP) tasks, such as automatic detection of bereavement-related distress. Our findings suggest that in addition to words bearing positive or negative sentiment, linguistic style can be an indicator of messages that demonstrate distress in the space of post-mortem social media content. These results contribute to research in computational linguistics by identifying linguistic features that can be used for automatic classification as well as to research on death and bereavement by enumerating attributes of distressed self-expression in a post-mortem context.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.