Abstract

Different grids of points to solve cutting and packing problems with rectangular shaped items are discussed in this work. The grids are the canonical dissections (also known as normal patterns), useful numbers, reduced raster points, regular normal patterns, and meet-in-the-middle patterns. Theoretical results involving the size and subset relations among the grids are proposed, besides practical procedures to reduce the size. Computational experiments are performed in which the two-dimensional (2D) knapsack problem is solved with an integer linear programming model. The results show the impact on the grids before and after applying the reduction procedures, concluding that the reduced raster points and meet-in-the-middle patterns are generally the grids with the smallest number of points.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.