Abstract

BLASTZ is a sequence alignment tool designed mainly for aligning neutrally evolved bio-sequences and has been the choice for aligning noncoding sequences. However, its running time is impractical for high throughput alignment of long sequences, for example, for the alignment of human and mouse genomes. In order to improve the performance and efficiency for alignment at genome scale, BLASTZ was implemented using the GLOBUS toolkit on a computing grid. A dynamic load balancing technique was introduced to achieve enhanced performance on a grid which consists of sources of heterogeneous characteristics, such as resources of different computational powers. The robustness of the implementation to disturbances due to other processes on the grid is demonstrated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.