Abstract

Gridded population data is widely used to map fine scale population patterns and dynamics to understand associated human-environmental processes for global change research, disaster risk assessment and other domains. This study mapped gridded population across Germany using weighting layers from building density, building height (both from previous studies) and building type datasets, all created from freely available, temporally and globally consistent Copernicus Sentinel-1 and Sentinel-2 data. We first produced and validated a nation-wide dataset of predominant residential and non-residential building types. We then examined the impact of different weighting layers from density, type and height on top-down dasymetric mapping quality across scales. We finally performed a nation-wide bottom-up population estimate based on the three datasets. We found that integrating building types into dasymetric mapping is helpful at fine scale, as population is not redistributed to non-residential areas. Building density improved the overall quality of population estimates at all scales compared to using a binary building layer. Most importantly, we found that the combined use of density and height, i.e. volume, considerably increased mapping quality in general and with regard to regional discrepancy by largely eliminating systematic underestimation in dense agglomerations and overestimation in rural areas. We also found that building density, type and volume, together with living floor area per capita, are suitable to produce accurate large-area bottom-up population estimates.

Highlights

  • Within the last decades, global population increased rapidly

  • Gridded population mapping for Germany based on building density, height and type spatial resolution from freely available, temporally and globally consistent Copernicus Sentinel-1 A/B and Sentinel-2 A/B imagery as well as OpenStreetMap (OSM) data, minimising the use of region-specific ancillary covariates

  • Gridded population mapping for Germany based on building density, height and type mapping approaches (BD-BUILD to weighted dasymetric (WD)-VOLADJ) overall results improved along both dimensions

Read more

Summary

Introduction

While 3.0 billion people lived on Earth in 1960, this is anticipated to reach approximately 10.0 billion by 2060 [1]. The regional and local dynamics of this global growth are highly diverse and can be traced back to a complex interplay of factors such as economic development and restructuring, urbanization and mobility, social, cultural and political frameworks, medical capacities, conflicts or climate. Gridded population mapping for Germany based on building density, height and type

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.