Abstract

Abstract Heavy rainfall hit the Yangtze–Huai Rivers basin (YHRB) of east China several times during the prolonged 2007 mei-yu season, causing the worst flood since 1954. There has been an urgent need for attaining and processing high-quality, kilometer-scale, hourly rainfall data in order to understand the mei-yu precipitation processes, especially at the mesoβ and smaller scales. In this paper, the authors describe the construction of the 0.07°-resolution gridded hourly rainfall analysis over the YHRB region during the 2007 mei-yu season that is based on surface reports at 555 national and 6572 regional automated weather stations with an average resolution of about 7 km. The gridded hourly analysis is obtained using a modified Cressman-type objective analysis after applying strict quality control, including not only the commonly used internal temporal and spatial consistency and extreme value checks, but also verifications against mosaic radar reflectivity data. This analysis reveals many convectively generated finescale precipitation structures that could not be seen from the national station reports. A comprehensive quantitative assessment ensures the quality of the gridded hourly precipitation data. A comparison of this dataset with the U.S. Climate Prediction Center morphing technique (CMORPH) dataset on the same resolution suggests the dependence of the latter's performance on different rainfall intensity categories, with substantial underestimation of the magnitude and width of the mei-yu rainband as well as the nocturnal and morning peak rainfall amounts, due mainly to its underestimating the occurrences of heavy rainfall (i.e., >10 mm h−1).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call