Abstract

A key difficulty faced when grid-characteristic methods on tetrahedral meshes are used to compute structures of complex geometry is the high computational cost of the problem. Formally, grid-characteristic methods can be used on any tetrahedral mesh. However, a direct generalization of these methods to tetrahedral meshes leads to a time step constraint similar to the Courant step for uniform rectangular grids. For computational domains of complex geometry, meshes nearly always contain very small or very flat tetrahedra. From a practical point of view, this leads to unreasonably small time steps (1–3 orders of magnitude smaller than actual structures) and, accordingly, to unreasonable growth of the amount of computations. In their classical works, A.S. Kholodov and K.M. Magomedov proposed a technique for designing grid-characteristic methods on unstructured meshes with the use of skewed stencils. Below, this technique is used to construct a numerical method that performs efficiently on tetrahedral meshes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call