Abstract

Large scale optical character recognition (OCR) refers to or means the computerization of large amounts of documents such as news papers. Despite the diversity of commercial OCR products, this task still remains too far from the mature especially if the input documents are insufficient quality or cursive writing such as the Arabic documents (Vinciarelli, 2002). Indeed, in their project (Holley, 2009), the national library of Australia reports that existing OCR systems are, commonly, weak. Moreover, their conducted experiments on historical newspapers show that the corresponding accuracy raw varied from 71% to 98.02%. This is surely due to the weakness of the approaches and techniques used in these systems. Printed cursive written documents such as the Arabic one presents, in addition, other difficulties which are behind the weaknesses of the existing commercialized systems especially when the quality of the input binary image of the document is not good enough. The first difficulty encountered for such writing is the segmentation of any given input word or sub-word into isolated characters given that the size of each ofwhich is variable. In practice, if the segmentation process is conducted successfully, then it eases the recognition step to a large extent. That is why Latin printedOCR systems are, commonly, more powerful compared to those devoted to the cursive writing documents. Dynamic Time Warp (DTW) algorithm is a well known procedure especially in pattern recognition (Alves et al., 2002; Khemakhem et al., 2005; Philip, 1992; Vuori et al., 2001), (Khemakhem et al., 2009; Kumar et al., 2006; Tapia et al., 2007). The DTW algorithm is the result of the adaptation of dynamic programming to the field of pattern recognition. Printed cursive writing OCR by the DTW algorithm provides very interesting recognition rates without prior character segmentation (such as: the Arabic, Persian, Urdu, latin connected characters,...), (Khemakhem et al., 2005). The purpose of the DTW algorithm is to perform optimal time alignment between a reference pattern and an unknown pattern and evaluate their difference. Intensive experiments show that the recognition rate of the DTW algorithm remains acceptable compared to the existing commercialized systems even when the quality of the input documents is not good enough. Intensive tests on more than 100.000 connected characters (most of them are Arabic cursive and including some important noise) show that the segmentation average rate is greater than 98% and the recognition average rate is 5

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call