Abstract
An edge-unfolding of a polyhedron is produced by cutting along edges and flattening the faces to a net, a connected planar piece with no overlaps. A grid unfolding allows additional cuts along grid edges induced by coordinate planes passing through every vertex. A vertex-unfolding permits faces in the net to be connected at single vertices, not necessarily along edges. We show that any orthogonal polyhedra of genus zero has a grid vertex-unfolding. (There are orthogonal polyhedra that cannot be vertex-unfolded, so some type of gridding of the faces is necessary.) For any orthogonal polyhedron P with n vertices, we describe an algorithm that vertex-unfolds P in O(n 2 ) time. Enroute to explaining this algorithm, we present a simpler vertex-unfolding algorithm that requires a 3 x 1 refinement of the vertex grid.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.