Abstract

ABSTRACTThe effects of grid-size modification on the derived topographic attributes are analysed and a procedure for scaling model parameters and similarity assessment between flow variables is proposed. Hydrological simulations are performed with a physically-based and spatially-distributed quasi-2D mathematical model. The scaled model parameters are the effective roughness coefficient associated with overland flow (nov) and the transverse slope in the cell (TSC). To scale the selected parameters, the criterion of equilibrium storage conservation between the different grid sizes is applied. Three basins of the central-east region of Argentina are modelled. The spatial variability of basin geomorphology is quantified using the entropy concept. The simulation results show that when grid size is increased, to obtain similar hydrological responses it is necessary to increase the nov or to reduce the TSC. In terms of similarity, the best results are achieved when TSC is scaled, particularly when water depths are considered.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.