Abstract
Molecular surfaces play a pivotal role in elucidating the properties and functions of biological complexes. While various surfaces have been proposed for specific scenarios, their widespread adoption faces challenges due to limited efficiency stemming from hand-crafted modeling designs. In this work, we proposed a general framework that incorporates both the point cloud concept and neural networks. The use of matrix multiplication in this framework enables efficient implementation across diverse platforms and libraries. We applied this framework to develop the GENIUSES (Grid-robust Efficient Neural Interface for Universal Solvent-Excluded Surface) model for constructing SES. GENIUSES demonstrates high accuracy and efficiency across data sets with varying conformations and complexities. Compared to the classical implementation of SES in the AMBER software package, our framework achieved a 26-fold speedup while retaining ∼95% accuracy when ported to the GPU platform using CUDA. Greater speedups can be obtained in large-scale systems. Importantly, our model exhibits robustness against variations in the grid spacing. We have integrated this infrastructure into AMBER to enhance accessibility for research in drug screening and related fields, where efficiency is of paramount importance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.