Abstract
Multi-subject non-rigid registration algorithms using dense deformation fields often encounter cases where the transformation to be estimated has a large spatial variability. In these cases, linear stationary regularization methods are not sufficient. In this paper, we present an algorithm that uses a priori information about the nature of imaged objects in order to adapt the regularization of the deformations. We also present a robustness improvement that gives higher weight to those points in images that contain more information. Finally, a fast parallel implementation using networked personal computers is presented. In order to improve the usability of the parallel software by a clinical user, we have implemented it as a grid service that can be controlled by a graphics workstation embedded in the clinical environment. Results on inter-subject pairs of images show that our method can take into account the large variability of most brain structures. The registration time for images of size 256 × 256 × 124 is 5 min on 15 standard PCs. A comparison of our non-stationary visco-elastic smoothing versus solely elastic or fluid regularizations shows that our algorithm converges faster towards a more optimal solution in terms of accuracy and transformation regularity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.