Abstract

The relative share of renewable energy, specifically the solar photovoltaic (PV), is increasing exponentially in the world electric energy sector. This is a cumulative result of reduction in the cost of solar panels, improvement in the panel efficiency, and advancement in the associated power electronics. Among different types of PV plants, installation of small-scale rooftop PV is growing rapidly due to direct end-user benefits and lucrative governmental incentives. There are various standards developed in regards to grid integration of PVs and other distributed generations (DGs). Different power converter topologies are developed to interface the PV panel with the utility grid. To keep up with the stringent regulations imposed by the standards, various control strategies and grid synchronization methods have been developed. This review article amalgamates and summarizes all of the aforementioned aspects of a grid-integrated PV system including various standards, power stage architectures, grid synchronization methods, operation under extreme events, and control methodologies, pertaining to small-scale PV plants. This article will help freshman researchers to gain some familiarity with the topic and introduce them to some of the key issues encountered in this field.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call