Abstract

In this work, an enhanced control method for the grid-tied single-phase inverter in small wind turbines based on PMSG (permanent-magnet synchronous generator) under grid voltage distortion is introduced. Composite observers are designed for decomposing harmonic and fundamental components of the grid current and voltage accurately, which facilitate current control action and synchronize the inverter with the grid. Grid voltage phase angle is detected by an advanced PLL (phase-locked loop) scheme based on the grid voltage fundamental component. The inverter current is adjusted by multi-PR (proportional-resonant) controllers, where its harmonic components are regulated to zero resulting in a sinusoidal grid current. In this scheme, the DC-link voltage is maintained at constant by a DC boost converter, while generator output power is controlled by the grid-tied inverter. An MPPT (maximum power-point tracking) operation of wind turbine is obtained, with which generator speed is estimated from the input voltage and current of the DC boost converter, thus avoiding the use of an expensive and complex mechanical sensor. The presented method is proved through experimental investigation, where experimental results show that the THD (total harmonic distortion) of grid current is about 3% under 12.25% THD of the grid voltage.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call