Abstract
World leaders and scientists have been putting immense efforts to strengthen energy security and reducing greenhouse gas (GHG) emissions by meeting growing energy demand for the last couple of decades. Their efforts accelerate the need for large-scale renewable energy resources (RER) integration into existing electricity grids. The intermittent nature of the dominant RER, e.g., solar photovoltaic (PV) and wind systems, poses operational and technical challenges in their effective integration by hampering network reliability and stability. This article reviews and discusses the challenges reported due to the grid integration of solar PV systems and relevant proposed solutions. Among various technical challenges, it reviews the non-dispatch-ability, power quality, angular and voltage stability, reactive power support, and fault ride-through capability related to solar PV systems grid integration. Also, it addresses relevant socio-economic, environmental, and electricity market challenges. Finally, it highlights the proposed solution methodologies, including grid codes, advanced control strategies, energy storage systems, and renewable energy policies to combat the discussed challenges. The findings of this article assist the power system scholars and researchers in conducting further research in this field. Furthermore, it helps the decision-makers to choose the appropriate technologies to deal with the anticipated challenges associated with the grid integration of PV systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.