Abstract

The governing equations for large-eddy simulation are derived from the application of a low-pass filter to the Navier–Stokes equations. It is often assumed that discrete operations performed on a particular grid act as an implicit filter, causing results to be sensitive to the mesh resolution. Alternatively, explicit filtering separates the filtering operation, and hence the resolved turbulence, from the underlying mesh distribution alleviating some of the grid sensitivities. We investigate the use of explicit filtering in large-eddy simulation in order to obtain numerical solutions that are grid independent. The convergence of simulations using a fixed filter width with varying mesh resolutions to a true large-eddy simulation solution is analyzed for a turbulent channel flow at Reτ=180, 395, and 640. By using explicit filtering, turbulent statistics and energy spectra are shown to be independent of the mesh resolution used.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call