Abstract
Over recent years, non-rigid registration has become a major issue in medical imaging. It consists in recovering a dense point-to-point correspondence field between two images, and usually takes a long time. This is in contrast to the needs of a clinical environment, where usability and speed are major constraints, leading to the necessity of reducing the computation time from slightly less than an hour to just a few minutes. As financial pressure makes it hard for healthcare organizations to invest in expensive high-performance computing (HPC) solutions, cluster computing proves to be a convenient solution to our computation needs, offering a large processing power at a low cost. Among the fast and efficient non-rigid registration methods, we chose the demons algorithm for its simplicity and good performances. The parallel implementation decomposes the correspondence field into spatial blocks, each block being assigned to a node of the cluster. We obtained an acceleration of 11 by using 15 2GHz PC's connected through a 1GB/s Ethernet network and reduced the computation time from 40min to 3min30. In order to further optimize the costs and the maintenance load, we investigate in the second part the transparent use of shared computing resources, either through a graphic client or a Web one.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.