Abstract
A grid drawing of a plane graph G is a drawing of G on the plane so that all vertices of G are put on plane grid points and all edges are drawn as straight line segments between their endpoints without any edge-intersection. In this paper we give a very simple algorithm to find a grid drawing of any given 4-connected plane graph G with four or more vertices on the outer face. The algorithm takes time O(n) and yields a drawing in a rectangular grid of width \lceil n/2 \rceil - 1 and height \lfloor n/2\rfloor if G has n vertices. The algorithm is best possible in the sense that there are an infinite number of 4-connected plane graphs, any grid drawings of which need rectangular grids of width \lceil n/2 \rceil - 1 and height \lfloor n/2\rfloor .
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.