Abstract

Purely numerical methods based on finite-element approximation of the acoustic or elastic wave equation are becoming increasingly popular for the generation of synthetic seismograms. We present formulas for the grid dispersion and stability criteria for some popular finite-element methods (FEM) for wave propagation, namely, classical and spectral FEM. We develop an approach based on a generalized eigenvalue formulation to analyze the dispersive behavior of these FEMs for acoustic or elastic wave propagation that overcomes difficulties caused by irregular node spacing within the element and the use of high-order polynomials, as is the case for spectral FEM. Analysis reveals that for spectral FEM of order four or greater, dispersion is less than 0.2% at four to five nodes per wavelength, and dispersion is not angle dependent. New results can be compared with grid-dispersion results of some classical finite-difference methods (FDM) used for acoustic or elastic wave propagation. Analysis reveals that FDM and classical FEM require a larger sampling ratio than a spectral FEM to obtain results with the same degree of accuracy. The staggered-grid FDM is an efficient scheme, but the dispersion is angle dependent with larger values along the grid axes. On the other hand, spectral FEM of order four or greater is isotropic with small dispersion, making it attractive for simulations with long propagation times.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.