Abstract
This paper discusses the use of a cascaded multilevel converter for flexible power conditioning in smart-grid applications. The main feature of the proposed scheme is the use of independent dc links with reduced voltages, which makes such a topology an ideal candidate for medium- and high-power applications with increased reliability. The developed control strategy regulates independent dc-link voltages in each H-bridge cell, and allows the selective and flexible compensation of disturbing currents under a variety of voltage conditions without requiring any reference frame transformation. The selective control strategies are based on the decompositions proposed in the conservative power theory, which result in several current-related terms associated with specific load characteristics. These current components are independent of each other and may be used to define different compensation strategies, which can be selective in minimizing particular effects of disturbing loads. Experimental results are provided to validate the possibilities and performance of the proposed control strategies, considering ideal and deteriorated voltage conditions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.