Abstract
This paper focuses on solving large size combinatorial optimization problems using a Grid-enabled framework called ParadisEO–CMW ( Para ̲ llel and Dis ̲ tributed EO ̲ on top on C ̲ ondor and the M ̲ aster W ̲ orker Framework). The latter is an extension of ParadisEO, an open source framework originally intended to the design and deployment of parallel hybrid meta-heuristics on dedicated clusters and networks of workstations. Relying on the Condor–MW framework, it enables the execution of these applications on volatile heterogeneous computational pools of resources. The motivations, architecture and main features will be discussed. The framework has been experimented on a real-world problem: feature selection in near-infrared spectroscopic data mining. It has been solved by deploying a multi-level parallel model of evolutionary algorithms. Experimentations have been carried out on more than 100 PCs originally intended for education. The obtained results are convincing, both in terms of flexibility and easiness at implementation, and in terms of efficiency, quality and robustness of the provided solutions at run time.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Journal of Parallel and Distributed Computing
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.