Abstract

BackgroundProtein structure can be described by backbone torsion angles: rotational angles about the N-Cα bond (φ) and the Cα-C bond (ψ) or the angle between Cαi-1-Cαi-Cαi + 1 (θ) and the rotational angle about the Cαi-Cαi + 1 bond (τ). Thus, their accurate prediction is useful for structure prediction and model refinement. Early methods predicted torsion angles in a few discrete bins whereas most recent methods have focused on prediction of angles in real, continuous values. Real value prediction, however, is unable to provide the information on probabilities of predicted angles.ResultsHere, we propose to predict angles in fine grids of 5° by using deep learning neural networks. We found that this grid-based technique can yield 2–6% higher accuracy in predicting angles in the same 5° bin than existing prediction techniques compared. We further demonstrate the usefulness of predicted probabilities at given angle bins in discrimination of intrinsically disorder regions and in selection of protein models.ConclusionsThe proposed method may be useful for characterizing protein structure and disorder. The method is available at http://sparks-lab.org/server/SPIDER2/ as a part of SPIDER2 package.

Highlights

  • Protein structure can be described by backbone torsion angles: rotational angles about the N-Cα bond (φ) and the Cα-C bond (ψ) or the angle between Cαi-1-Cαi-Cαi + 1 (θ) and the rotational angle about the Cαi-Cαi + 1 bond (τ)

  • Despite of the long history, the field of secondary structure prediction continues to flourish as the accuracy of three-state prediction steadily improves to 82–84% [1] because of larger sequence and structural databases [2,3,4,5] and more sophisticated deep learning neural networks [6, 7]

  • Instead of multi-state secondary structure, backbone structure of proteins can be more accurately described by continuous dihedral or rotational angles about the N-Cα bond (φ), the Cα-C bond (ψ) for single residues

Read more

Summary

Introduction

Protein structure can be described by backbone torsion angles: rotational angles about the N-Cα bond (φ) and the Cα-C bond (ψ) or the angle between Cαi-1-Cαi-Cαi + 1 (θ) and the rotational angle about the Cαi-Cαi + 1 bond (τ) Their accurate prediction is useful for structure prediction and model refinement. Despite of the long history, the field of secondary structure prediction continues to flourish as the accuracy of three-state prediction (helix, sheet, and coil) steadily improves to 82–84% [1] because of larger sequence and structural databases [2,3,4,5] and more sophisticated deep learning neural networks [6, 7]. Instead of multi-state secondary structure, backbone structure of proteins can be more accurately described by continuous dihedral or rotational angles about the N-Cα bond (φ), the Cα-C bond (ψ) for single residues. Heffernan et al [18] employed

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call