Abstract

The dynamic localization is a kind of technology by which the mobile robot tries to localize the position by itself. According to the dynamic localization failure of mobile robots in indoor network blind areas, an autonomous-dynamic localization system which dynamically chooses beacon node and establishes grids is proposed in this paper. This method applies received signal strength indication (RSSI) for distance measurement. Furthermore, the proposed grid-based improved maximum likelihood estimation (GIMLE) fulfills the localization. Finally, the localization error correction is implemented by Kalman filter. The approach combines the classical Kalman filter with the other localization algorithms. The purpose is to smooth and optimize the results of the algorithms, in order to improve the localization accuracy. In particular, in network blind spots, the Kalman filter provides better performance than the other algorithms listed in the paper. Experimental results show the accuracy, adaptivity, and robustness of the dynamic self-localization of mobile robots.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.