Abstract

The ‘Grey-Box-Processing’ method, presented in this article, allows for the integration of simulated and experimental data sets with the overall objective of a comprehensive validation of simulation methods and models. This integration leads to so-called hybrid data sets. They allow for a spatially and temporally resolved identification and quantitative assessment of deviations between experimental observations and results of corresponding finite element simulations in the field of vehicle safety. This is achieved by the iterative generation of a synthetic, dynamic solution corridor in the finite element domain, which is deduced from experimental observations and restricts the freedom of movement of a virtually analyzed structure. The hybrid data sets thus contain physically based information about the interaction (e.g. acting forces) between the solution corridor and the virtually analyzed structure. An additional result of the ‘Grey-Box-Processing’ is the complemented three-dimensional reconstruction of the incomplete experimental observations (e.g. two-dimensional X-ray movies). The extensive data sets can be used not only for the assessment of the similarity between experiment and simulation, but also for the efficient derivation of improvement measures in order to increase the predictive power of the used model or method if necessary. In this study, the approach is presented in detail. Simulation-based investigations are conducted using generic test setups as well as realistic pedestrian safety test cases. These investigations show the general applicability of the method as well as the significant informative value and interpretability of generated hybrid data sets.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.