Abstract

Abstract In the present study, Grey based fuzzy algorithm was used for the optimization of complex multiple performance characteristics of the ball burnishing process. Experiments have been planned according to Taguchi's L16 orthogonal design matrix. Burnishing force, number of passes, feed rate and burnishing speed were selected as input parameters, whereas surface roughness and microhardness were selected as output responses. Using Grey relation analysis (GRA), Grey relational coefficient (GRC) and Grey relation grade (GRG) were obtained. Then, Grey-based fuzzy algorithm was applied to obtain Grey fuzzy reasoning grade (GFRG). Analysis of variance (ANOVA) was carried out to find the significance and contribution of parameters on multiple performance characteristics. Finally, a confirmation test was applied at the optimum level of GFRG to validate the results. The results also show the feasibility of the Grey-based fuzzy algorithm for continuous improvement in product quality in complex manufacturing processes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.