Abstract

The clustering which is an unsupervised classification method is very important for data processing applications. The main purpose of the clustering is to separate the data samples into different groups by using the similarity (or dissimilarity) between data samples. There are many conventional and heuristic algorithms which are used for the clustering problem. Nevertheless, in last years, it is seen that many new techniques are proposed and improved to solve the clustering problem. In this paper, grey wolf optimization (GWO) algorithm which is modelled according to the social behaviour of grey wolves is applied to partition the data samples by searching the optimal center of the clusters. The clustering performance of the GWO is compared with the performances of the three clustering algorithms: k-means, k-medoids and fuzzy c-means algorithms. The experiments show that the GWO algorithm has generally better results than the other clustering algorithms and can be alternatively applied on the clustering problem.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.